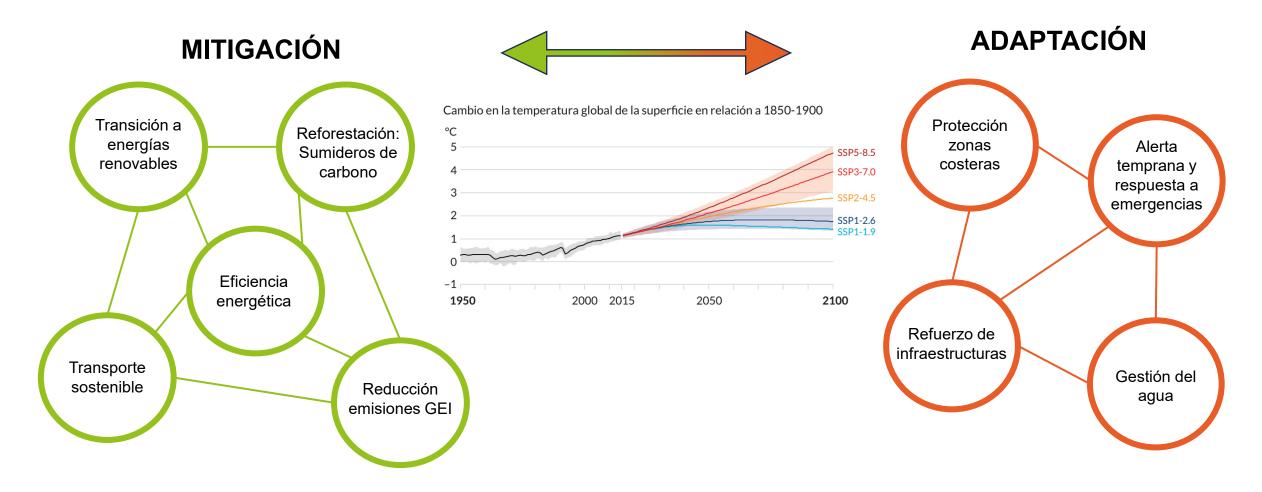


Avances de la Dirección General de Carreteras en adaptación al cambio climático y mejora de la resiliencia de las infraestructuras viarias

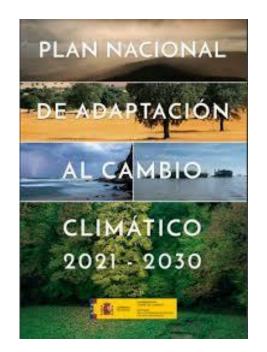
Ana Arcos González

Técnica superior en la Subdirección General de Sostenibilidad e Innovación


Dirección General de Carreteras

- 1 INTRODUCCIÓN ¿Por qué es necesario adaptar?
- 2 RED DE CARRETERAS DEL ESTADO (RCE) Datos generales.
- 3 PLANIFICACIÓN ADAPTACIÓN Plan de Adaptación al Cambio Climático de la RCE.
- 4 OPERACIÓN Y MANTENIMIENTO. Priorización inversiones y mejora de la gestión de las inundaciones.
- **5** CONCLUSIONES.

¿POR QUÉ ES NECESARIO ADAPTAR?



¿POR QUÉ ADAPTAR NUESTRAS CARRETERAS?

REGLAMENTO (UE) 2021/1119 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 30 de junio de 2021

por el que se establece el marco para lograr la neutralidad climática y se modifican los Reglamentos (CE) n.º 401/2009 y (UE) 2018/1999 («Legislación europea sobre el clima»)

A11.L2.M01. Identificación, análisis y evaluación de normativas, instrucciones y estándares de cálculo y diseño de las infraestructuras, edificaciones y dotaciones auxiliares para el transporte

A11.L3.M02 Evaluación de la vulnerabilidad de las redes y sistemas de transporte existentes y elaboración de planes de actuaciones para mejora de la resiliencia

A11.L3.M01 Revisión, evaluación y refuerzo de protocolos de emergencias, planes de contingencia y sistemas de alerta

A11.L4.M02 Integración del cambio climático en los planes de los titulares de infraestructuras del transporte

Valencia - Octubre 2024

Graves daños en la **Autovía A-7** zona Quart de Poblet (by pass zona sur)

Graves daños en la **carretera V-31** (Pista de Silla)

Rambla N-234 (Teruel) Septiembre 2024

AP-66 (Asturias - León) Noviembre 2024

A-334 PK32 (Almería) Noviembre 2024

(Comunidad de Madrid) Octubre 2023

PO-11 (Pontevedra) Octubre 2023

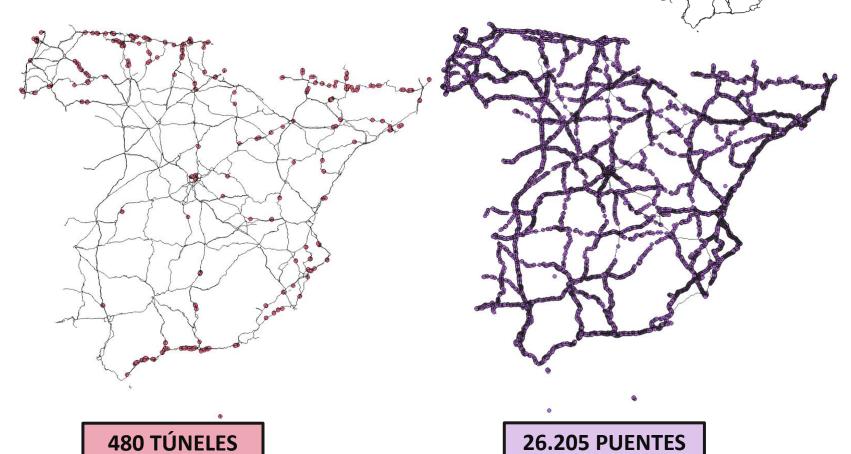
N-523(Badajoz) Diciembre 2022

DATOS GENERALES - RED DE CARRETERAS DEL ESTADO (RCE)

Longitud total: 26.459 Km

- 44% Autovías y Autopistas
- 54% Carreteras Convencionales
- 2% Carreteras multicarril

Concentra un 52% del tráfico total y un 65% del tráfico de vehículos pesados

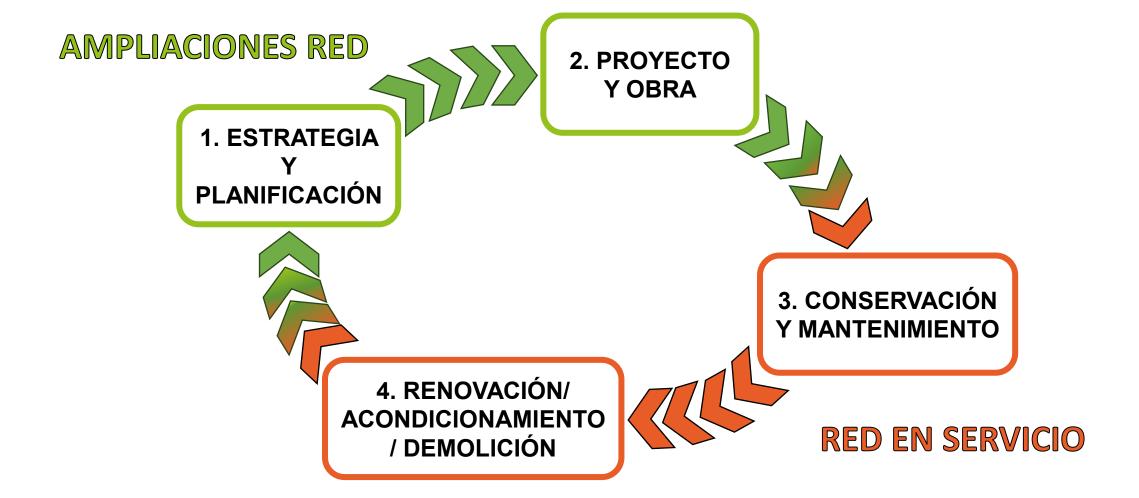

DATOS GENERALES - RCE

+ FIRMES (26.459 Km)

+ OBRAS DE TIERRA (26.459 Km)

+ SEÑALIZACIÓN

(660.000 señales + 125.000 carteles)



26.205 PUENTES

67.166 PEFA

FASES DEL CICLO DE VIDA DE UNA CARRETERA

ADAPTACIÓN DE LA RED EN SERVICIO

Plan de Adaptación de la RCE al CC

PLAN DE ADAPTACIÓN DE LA RED DE CARRETERAS DEL ESTADO AL CAMBIO CLIMÁTICO.

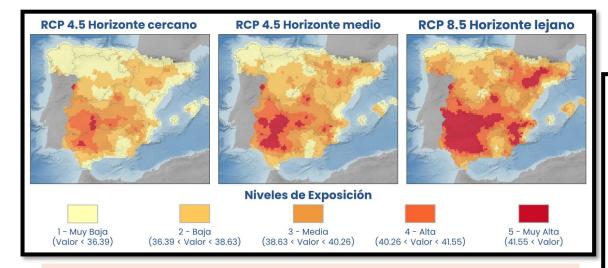
DIAGNÓSTICO DE LA SITUACIÓN INCIAL

OBJETIVOS A ALCANZAR

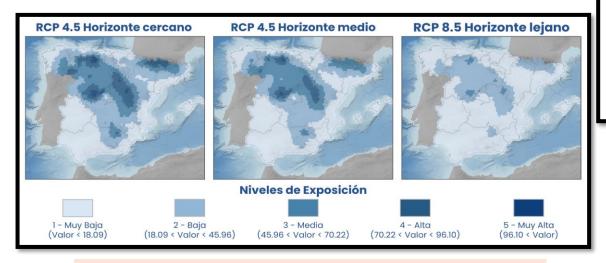
LÍNEAS DE ACTUACIÓN Y MEDIDAS EVALUACIÓN DE LA VULNERABILIDAD Y RIESGO DE LA RED

EVALUACIÓN DE LA VULNERABILIDAD Y RIESGO DE LA RED

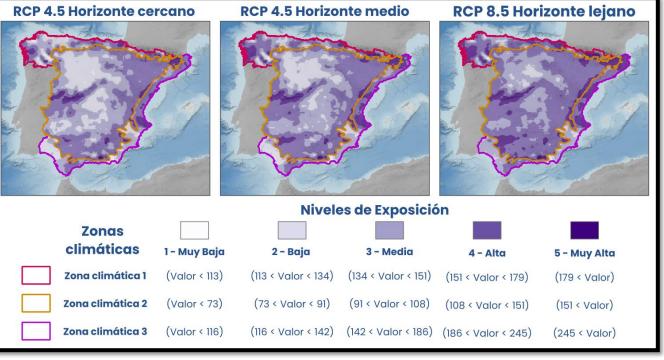
Plan de Adaptación de la RCE al CC


EVALUACIÓN DE IMPACTOS VULNERABILIDAD RIESGO LA RESILIENCIA **EXPOSICIÓN PROBABILIDAD SENSIBILIDAD GRAVEDAD**

#CONAMA2024


Congreso Nacional del Medio Ambiente

EXPOSICIÓN



Percentil 99 de la Temperatura Máxima (ºC)

Días de Temperatura menor a 0 (°C)

Precipitación Máxima 24h (mm/día) para el periodo de retorno T100 años

В	С	D	E	F	G	н	1	J	K	L	M	N
	METODOLOGÍA DE ADAPTACIÓN AL CAMBIO CLIMÁTICO EN CARRETEI							PUESTA DE DETERMINACIÓN DE LA SENSIBILIDAD E				EN BASE A LOS DA
Factor de 🔻	Nivel de Sensibilidad ▼ Có					Código 🔻	Tenido en cuenta ▼	DATO	Nivel de Sensibilidad ▼			Amenazas
Sostenibilidad	Muy Baja (1)	Baja (2)	Media (3)	Alta (4)	Muy Alta (5)	Impacto "Panel de Expertos"?		PODEMU	Baja (1)	Media (2)	Alta (3)	Amenazas
Estado de conservación (Condición del activo)	Puente en excelente estado, o con daños durables menores y aislados	Puente en buen estado, con daños durables menores generalizad os, o moderados puntuales	a; o daños	O puente con daños mecánicos	estabilidad de la	D1- D2/S1/G1 /l1-I5/A1	No	índice global	<65	Sin dato	>=65	Precipitación Temperaturas bajas Temperatura alta Viento Nevadas Incendios Embate de mar
Gravedad de daños durables en última inspección	Sin daños	Daños durables leves	Daños durables moderados	Daños durables graves o generalizado s	Daños durables graves y generalizad os	D1-D2/S1	No	AVISO EN BÁSICAS	NO	Sin dato	SI	Precipitación Temperaturas bajas Temperatura alta Viento Nevadas Incendios Embate de mar
Uso de sales fundentes como actividad de mantenimiento	No	Puntual / Poco frecuente	Esporádico	Frecuente	Recurrente	D1-D2/S1	No	USO DE FUNDENT ES DE VI	Sin dato	Preventivo	Curativo	Temperaturas bajas Nevadas
Grado de socavación actual	No existe socavación	Socavació n leve y puntual	Socavació n leve generalizad a	Socavación moderada/gr ave puntual	Socavació n moderada/ grave generalizad	G1	No	SOCAVAC IÓN	No	Sin dato	Si	Precipitación Embate de mar
Pilas sobre el cauce	0%	<25%	<50%	<75%	>75%	G1	No	Salva cauce	No	Sin dato	Si	Precipitación Nevadas Incendios Embate de mar

3 horizontes temporales / amenaza * 8 amenazas * 100.000 activos

= 2.400.000 matrices

BAJA

EXPOSICIÓN MEDIA

ALTA

MUY ALTA

VULNERABILIDAD FRENTE A LLUVIA INTENSA

VULNERABILIDAD

BAJA

MEDIA

ALTA

			1	2	3	4	5
DAD	REDUCIDA	1	1	2	3	4	5
SIBILID	MODERADA	2	2	4	6	8	10
SEN	IMPORTANTE	3	3	6	9	12	15

MUY BAJA

Vulnerabilidad frente a la amenaza "Lluvia intensa" - Puentes **RCP 4.5 Horizonte medio**

RCP 4.5 Horizonte cercano

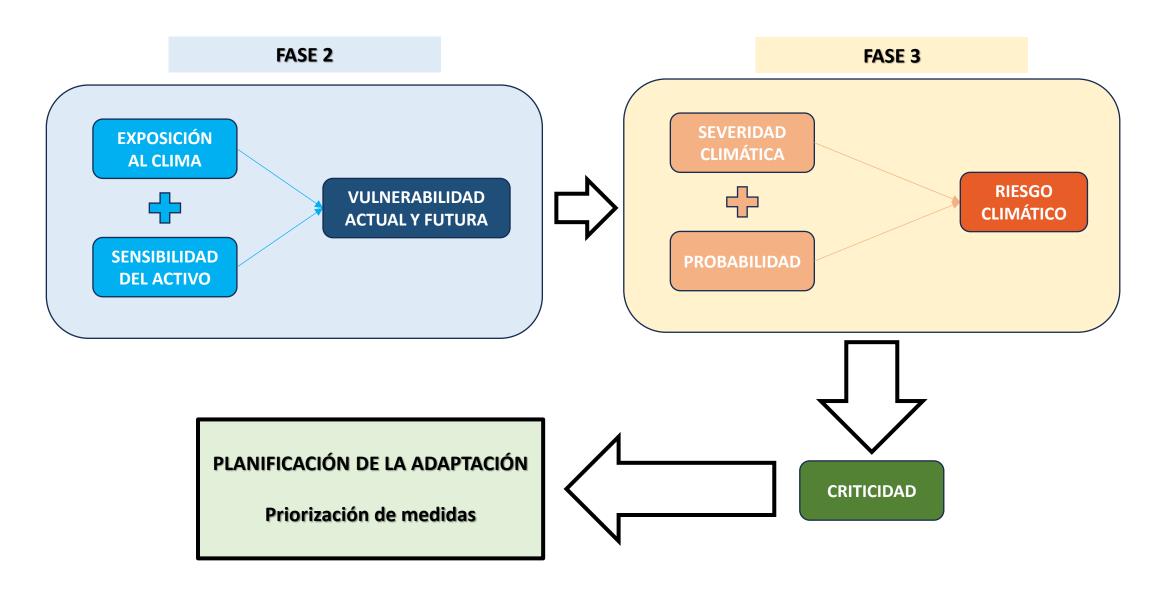
Vulnerabilidad frente a la amenaza "Lluvia intensa" - Obras de tierra

RCP 4.5 Horizonte cercano RCP 4.5 Horizonte medio

Vulnerabilidad frente a la amenaza "Lluvia intensa" - PEFAS

RCP 4.5 Horizonte cercano

Vulnerabilidad frente a la amenaza "Lluvia intensa" - Túneles


RCP 4.5 Horizonte cercano

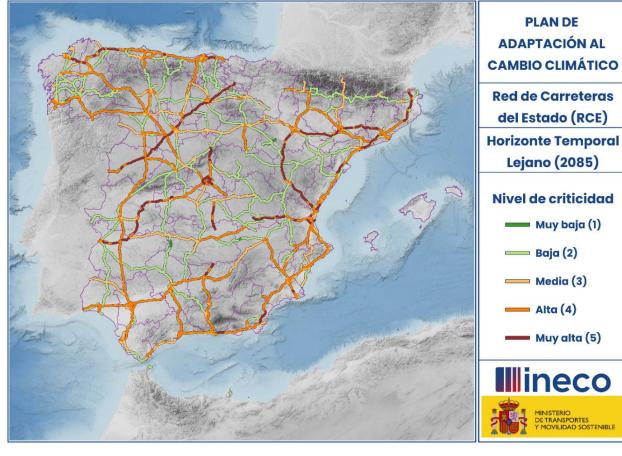
2021

MAPAS DE CRITICIDAD

VADIADI E	NIVEL DE CRITICIDAD							
VARIABLE	Muy baja (1)	Baja (2)	Media (3)	Alta (4)	Muy alta (5)			
TRÁFICO AFECTADO (IMD)	<2.500	2.500-5.000	5.000 – 10.000	10.000 – 20.000	>20.000			
TRÁFICO DE VEHÍCULOS PESADOS AFECTADO (IMDp)	0-8%	8-10%	10-12%	12-15%	>15%			
RED TEN-T	Resto	-	-	Global	Básica			
ECONOMÍA Y EMPLEO (NÚMERO DE EMPRESAS AFECTADAS)	<75.311	75.311-150.621	150.621-225.932	225.932-301.242	>301.242			
POBLACIÓN AFECTADA (NÚMERO DE PERSONAS)	<919.060	919.060-1.838.119	1.838.119-2.757.179	2.757.179-3.676.238	>3.676.238			
TIPO DE VÍA	Carretera Convencional	-	-	Carretera multicarril	Autovía/ Autopista			
ACCESIBILIDAD GLOBAL	1	2	3	4	5			

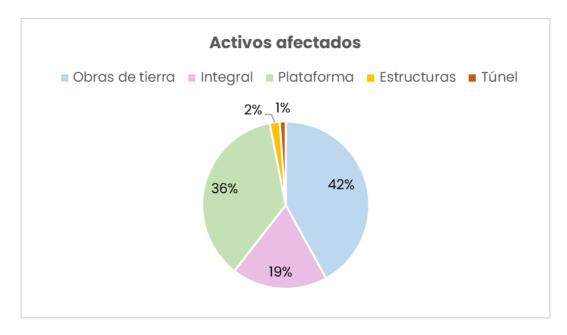
Acceso a servicios básicos

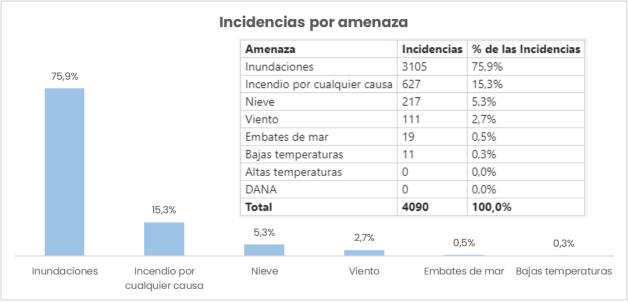
El indicador global de accesibilidad se ha construido mediante un análisis multicriterio, tomando como base el municipio y considerando tres ámbitos: acceso a servicios, transporte por carretera y modos alternativos a la carretera. Cada ámbito se subdivide en bloques de indicadores que evalúan aspectos como la disponibilidad de servicios, los tiempos de viaje a puntos de interés y la distancia a estaciones ferroviarias o aeropuertos.


Sistema Integrado de Datos Municipales (SIDAMUN), del Ministerio para la Transición Ecológica y el Reto Demográfico

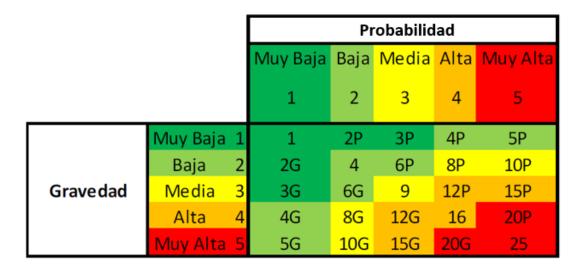
GRAVEDAD

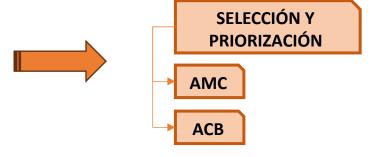
MAPAS DE CRITICIDAD





La norma IEC/ISO 31010-2009, sugiere tres enfoques:


- a) El uso de datos históricos relevantes para identificar eventos o situaciones que han ocurrido en el pasado y, por lo tanto, ser capaz de extrapolar la probabilidad de su ocurrencia en el futuro.
- b) La utilización de técnicas de predicción, las cuales permiten realizar pronósticos de probabilidad de ocurrencia de un fenómeno climático.
- c) La opinión de los expertos se puede utilizar en un proceso sistemático y estructurado para estimar la probabilidad, con base en toda la información relevante disponible.



Riesgo	Rangos de Riesgo				
Mesgo	(Probabilidad x Gravedad				
Muy Bajo	1-3				
Bajo	4-6				
Medio	7-10				
Alto	12-16				
Muy Alto	17-25				

EVALUACIÓN DE LA RESILIENCIA

MEDIDAS DE ADAPTACIÓN

GESTIÓN DE INUNDACIONES

RIESGOS ASOCIADOS A PRECIPITACIONES EXTREMAS

Fallo/Colapso de estructuras de drenaje transversal

Análisis de riesgos de origen hidrológico e implementación de un sistema de alertas

Acumulación de agua en la calzada

Elaboración de directrices técnicas para mejorar la gestión de las inundaciones

ESTUDIO HIDROMETEOROLÓGICO Y CÁLCULO HIDRÁULICO

Definición del emplazamiento y condiciones locales del entorno del PIR

Análisis **geomorfológico** de la

cuenca y la red de drenaje

Parametrización del modelo hidrometeorológico

precipitaciones y c. modelo Regionalización de meteorológico

0.327

0.28-

82.0 0.32

Cambio Hidrograma (Volumen,

RCP4.5

RCP8.5

2

Hidrometeorológica -Caracterización Hidráulica

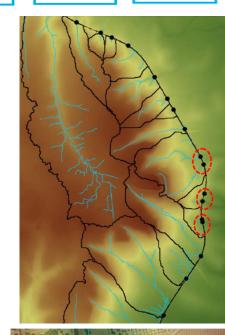
Hidrometeorológica -Hidráulica Simulación

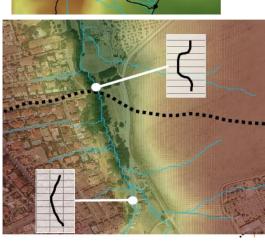
0.08

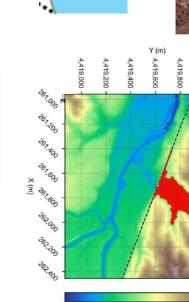
8 0.12 200 Ŕ

(ui) diseud

Time (min)


8


2039


2050

2070

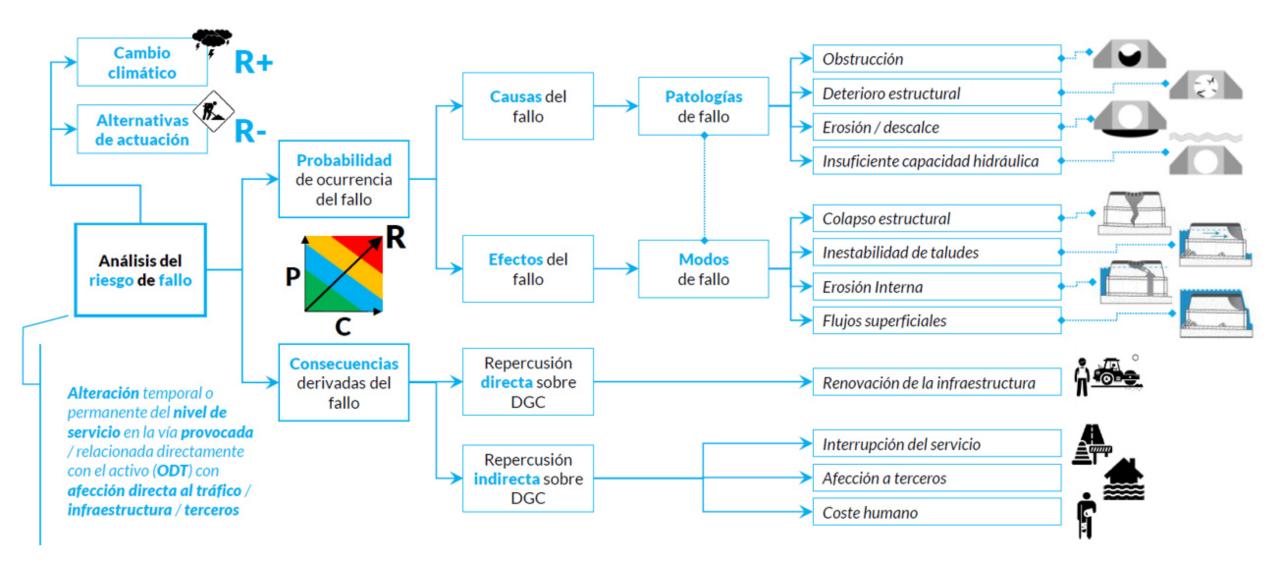
temporal Horizonte

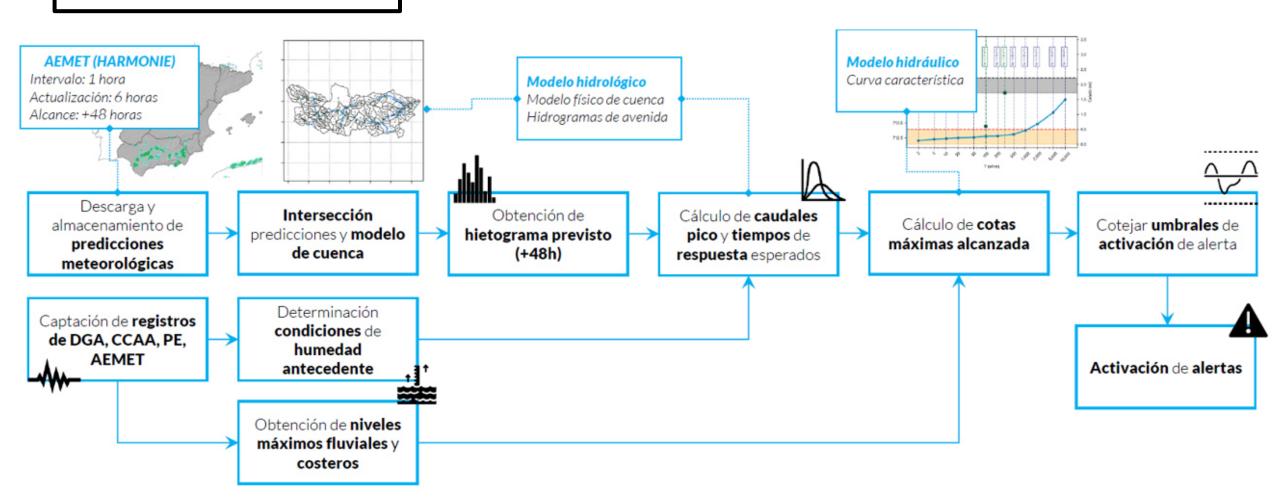
247.5 250.0 252.5 255.0

242.5 245.0 4,420,000

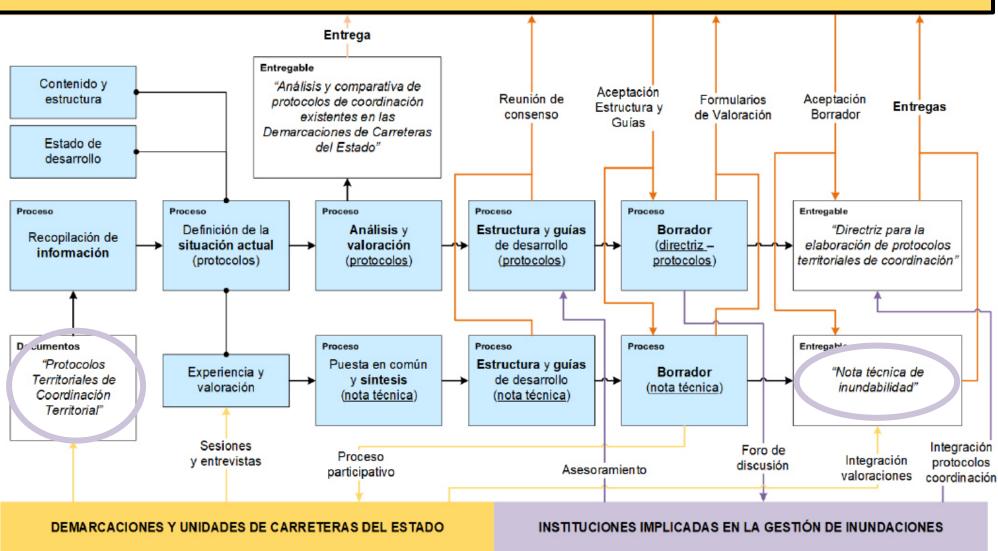
4,420,200

- 262.5


257.5 260.0



ANÁLISIS DE RIESGO – PRIORIZACIÓN DE INVERSIONES



SISTEMA DE ALERTA

DIRECTRICES TÉCNICAS Y PROTOCOLOS DE COORDINACIÓN

CONCLUSIONES

1 - El planeta tiene una inercia climática que lo va a mantener caliente.

Incluso si las emisiones pudieran reducirse mágicamente a cero de inmediato, la absorción de CO2 por parte del planeta sería tan lenta que el gas que ya estaba en el aire permanecería en su mayor parte allí y mantendría el planeta caliente durante mucho tiempo.

- 2 No hay que centrar únicamente los esfuerzos en MITIGAR los efectos del CC → La ADAPTACIÓN es igualmente importante.
- 3 La <u>ADAPTACIÓN</u> de las infraestructuras viarias constituye una necesidad y representa una oportunidad.

"Adaptation is the only means to reduce the now-unavoidable costs of climate change over the next few decades" — Nicholas Stern

Ana Arcos González aarcos@transportes.gob.es