

COMBUSTIBLES ALTERNATIVOS

Seguridad y Reglamentación para nuevos Combustibles

Montserrat Espín

21/11/2022

Combustibles Alternativos

Cuáles son las opciones?

Carbono Hidrogeno **Amoniaco** Carbono **Fueles Biofuels** Sintéticos Posible Camino Fosil Metanol/ LNG LPG Etanol

Puntos a considerar

Madurez y disponibilidad de la tecnología

Energía específica (peso) y densidad (volumen)

Consideraciones de seguridad (inflamabilidad, toxicidad)

Marco normativo

Disponibilidad global de combustible (red de terminales)

Disponibilidad de instalaciones de bunkering

Sostenibilidad (Aspectos Ambientales, Sociales y de Gobernanza/Responsabilidad Social Corporativa)

Económicos: CAPEX

Económicos: OPEX

Flexibilidad para una adaptación futura

Aspectos Técnicos

Combustibles Alternativos – Requerimientos de Espacio

→ Densidad de Energía

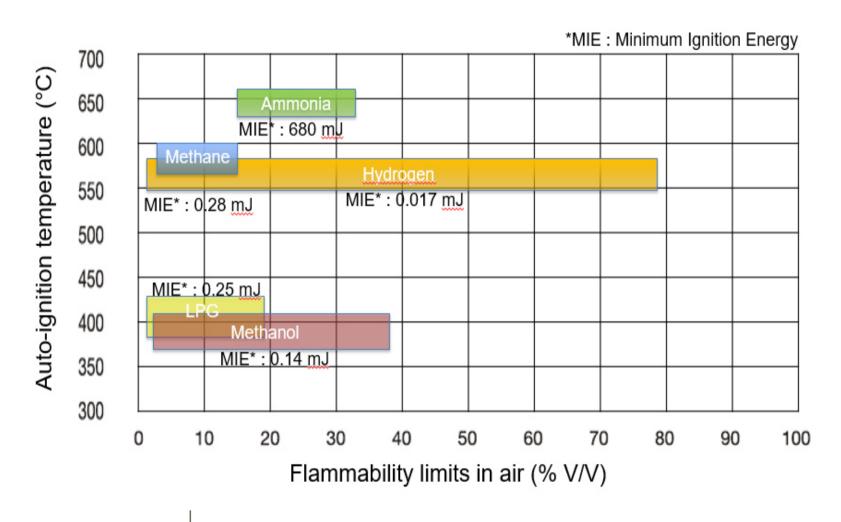
Amoniaco Líquido 11,3 MJ/I

Hidrógeno líquido 8,5 to 9,2 MJ/I

H2 @ 700bars 4,8 MJ/l

Batería Li-ion 0,5 MJ/I

Combustibles Alternativos – Requerimientos de Espacio



→ Densidad de Energía

Fuel Type	Mass Enegy density LHV [MJ/kg]	Volumetric Energy Density LH\ (GJ/m3)	Storage Pressure		Storage emperatur e [ºC]	Relative Tank Volumen (without insulation)
Marine Gas Oil (reference)	41,8	36,6	1		20	1
Liquid Mehane LNG	50	23,4	1		-162	1,6
Ethanol	26,7	21,1	1		20	1,7
Methanol	19,9	15,8	1		20	1,7
Liquid Propane	50,3	26,7	1 7		-42 20	1,4
Liquid Ammonia	18,6	12,7	1 10 18		-34 20 45	2,9
Liquid Hydrogen	120	8,5	1	1	-253	4,3
Compressed Hydrogen	120	7,5	700		20	4,9

Límites de Inflamabilidad

Características
y Aspectos de
Seguridad para
los
combustibles
alternativos

LNG como fuel Marino (biometano)

Seguridad

- Explosivo: equipos Ex.
- Detección de fugas.
- Doble pared tuberías ...

Técnica

- Muy bien conocido, ya que se utiliza a día de hoy.
- Normalmente utilizado en motores duales.
- Requiere combustible piloto.
- Densidad de energía=> Requerimientos de almacenamiento

$$CH_4 + 2 O_2 \rightarrow$$

2 $H_2O + 2 CO_2 + Heat$

Ambientales

- Emisiones reducidas comparados con el LFO:
 - CO₂: y fugas de Metano no quemado
 - NOx: 0 %
 - Biometano

Equipos

Se necesita enfriamiento para mantenerlo por debajo de -163°C, o bien con tanques presurizados.

LNG como fuel Marino

Compatibilidad de Materiales

Riesgo de fragilización de los materiales por trabajar a bajas temperaturas.;

Restricciones en GA

- Principio de Segregación: mantener lo más separados posibles los espacios seguros de los peligrosos.
- Cámaras de máquinas ESD o tipo seguro
- Disposición de tanques de modo que se evite daños en caso de varada o accidente; Medidas mínimas al costado y al fondo.
- Zonas peligrosas.

Metanol como fuel Marino

Seguridad

- Tóxico
- Explosivo
- · Altamente miscible en agua
- Incoloro
- · Quema con llama casi invisible

Técnica

- · Fácil de manejar como fuel líquido
- Densidad de energía=> Requerimientos de almacenamiento (2,5 veces volumen Fuel)
- Motores disponibles (número limitado)
- · Bajo contenido energético

2 CH₃OH + 3 O₂ \rightarrow 4 H₂O + 2 CO₂ + Heat

Ambientales

- Emisiones reducidas comparados con el LFO:
 - CO₂: -80% (metanol verde)
 - NOx: -50%
 - Biodegradable

Equipos

Se necesita enfriamiento para mantenerlo por debajo de 64°C

Detectores especiales para detectar incendios.

Amplio rango inflamabilidad y baja energía de ignición.

Metanol como fuel Marino - Seguridades

Análisis de riesgos

- Se llevará acabo análisis de riesgos de modo que se estudien los efectos de la toxicidad a personas, y como afecta a la estructura e integridad del buque.
- Se realizará un análisis de explosión para todos los espacios peligrosos que puedan contener metanol.

Compatibilidad de Materiales

Restricciones en GA

- Se requieren coferdams alrededor de los tanques de combustible, los tanques de combustible pueden estar en el costado del barco debajo de la cubierta;
- Los coferdams podrán purgarse o llenarse con agua con un sistema no permanente. El vaciado será a través de un sistema de sentinas separado.
- Tanque de drenaje dedicado
- Zonas peligrosas, basadas en la IEC 60092-502 zonas extendidas tendido a 6m+4m alrededor de las salidas de las válvulas PV del tanque
- Otros requerimientos generales
- Evitar atmósferas inflamables o explosivas: tubería de doble pared + inertización del tanque
- Limite las fuentes de ignición (certificación/shut-off).

Biocombustibles como fuel Marino

Seguridad

- La misma que la aplicada a los combustibles marinos de base fósil.
- FP >60°C

Técnica

- Solución de transición para buques existentes
- Compatibles con motores marinos modernos.
- Control del biocombustible (tiempo máximo de almacenamiento, degradación, ...).

2 CH₃OH + 3 O₂
$$\rightarrow$$
 4 H₂O + 2 CO₂ + Heat

Ambientales

 Emisiones reducidas comparados con el LFO (carbono neutro).

Equipos

Mínima inversión.

Dependiendo del biocombustible, pueden requerir aditivos antioxidantes.

Amoniaco como combustible marino

Seguridad

- Muy tóxico
- El vapor puede estancarse en el medio ambiente marino
- Corrosivo
- Olor muy penetrante y molesto.
- Más ligero que el aire, pero amoniaco Vapor, más pesado.

Técnicos

- Requiere espacio de almacenamiento (3 veces fuel)
- No existen disponibles motores de amoniaco.
- Límites explosividad pequeños (14%-28%).
- Alta energía de ignición
- Se espera prototipo motor en 2024 (piloto?)

$$4 NH_3 + 3 O_2 \rightarrow 2 N_2 + 6 H_2O + Heat - No CO_2$$

Medioambientales

- C cero, si se produce a partir de energías renovables.
- · Tóxico para la vida acuática
- Posibles subproductos de la combustión = NOx, N₂O (potente gas de efecto invernadero) y amoníaco sin quemar. → SOFC no emite N₂O

Equipos

- Materiales en contacto con amoníaco serán resistentes a la corrosión (tanques, tuberías)
- Equipos necesarios para el tratamiento de los vapores de amoníaco (scrubbers, oxidantes, etc.)

Amoniaco como fuel - Seguridades

- Análisis de Riesgos
 - Se llevará acabo análisis de riesgos.
- Filosofía "Cero fugas" (toxicidad)
 - · Doble pared incluso en cubierta abierta,
 - Sistema de tratamiento de vapor de amoníaco (contención de los vapores).
 - Gestión de fugas de líquido (tanque de drenaje dedicado)
 - Detección de concentración
 - Materiales compatibilidad (corrosión).
- Requisitos de almacenamiento según la tecnología (tanque tipo A o tipo C)
- Otros requerimientos generales
 - Prevenir atmósferas inflamables o explosivas (Diseño / Ventilación o inertización)
 - Limite las fuentes de ignición (certificación/shut-off)

Hidrógeno como combustible Marino

Seguridad

- No tóxico
- In general, presencia de hidrógeno (inflamabilidad/explosividad, fugas, fragilización)
- Pueden funcionar a altas T^a
- · Llama invisible

Técnicos

- · Hidrógeno abundante: verde.
- Alto espacio almacenamiento (6/10 veces fuel)
- Variedad de tecnología y combustible asociado
- Asociado a baterías
- Motores de combustión en desarrollo

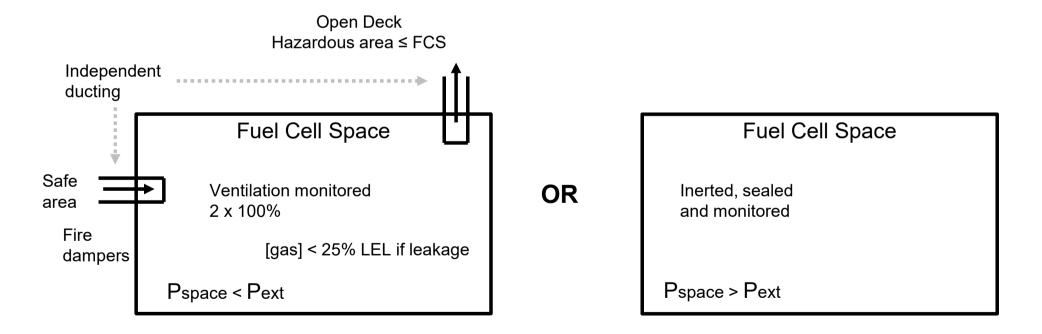
 $O_2 + 2H_2 \rightarrow$ 2 H₂O + Heat

Medioambientales

Ø Si el hidrógeno es verde

Equipos

- BOP basado en elementos clásicos (bombas, intercambiador de calor, secadores...)
- Módulo de celdas de combustible basado en el estándar de la industria IEC 62282 y marinizado

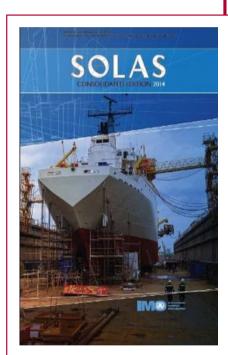

Hidrógeno – Seguridades (Células de Combustible)

- Análisis de Riesgos
 - Se llevará acabo análisis de riesgos.
- Compatibilidad de Materiales (fragilización)
- Instalación de alimentación de pila de combustible compatible con series IEC 62282
 - Tubería con recinto secundario o completamente soldada
 - Exhaustaciones de aire y gas independientes
- Seguridad contra incendios equivalente al espacio de máquinas del cat.A
 - Detectores adecuados para los gases potenciales (humo insuficiente)
- Sistemas eléctricos (certificados/shut-off)
- Monitorización & acciones de seguridad

NR 547 Células de Combustible

Disposiciones a bordo

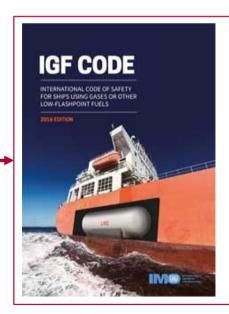
 2 opciones para los espacios de células de combustible (fuel cell spaces,FCS): ventilación or inertizacion



3

Reglamentación IMO & BV

Contexto regulatorio IMO



Combustible con flash-point < 60°C:

- No en línea con SOLAS II-2/4.2.1.1
- SOLAS II-1/56 y 57, refieren al código IGF

Código IGC Ch.16 para gaseros que usan la carga como combustible u otros combustibles de bajo flash point

Nota: no se permiten cargas tóxicas como combustible

- MSC.391(95) en vigor en Junio 2015, obligatoria a partir de 01/01/2017
- El subcomité CCC de la OMI lleva a cabo más desarrollos, informando al Comité MSC de la OMI.

© 2022 Bureau Veritas Marine & Offshore 19 Combustibles Alternativos

IMO - IGF Code

LNG / CNG

Methanol

LPG

Ammonia

Hydrogen

Functional requirements, goals and principles (Ship design, construction and operation)

Fuel Cells

IGF Code Part A

- Detailed risk analysis
- Alternative design approach if no detailed requirements available in IGF Code

Detailed requirements related to Ship design, construction and operation

IGF Code Parts A-1, B-1, C-1

MSC.1/Circ.1647

- Draft finalized by CCC7 (09/2021)
- Approved by MSC105 (04/2022)

MSC.1/Circ.1621

- Interim quidelines for the safety of ships using methyl/ethyl alcohol as fuel
- Approved by MSC102 in November 2020

Guideline under

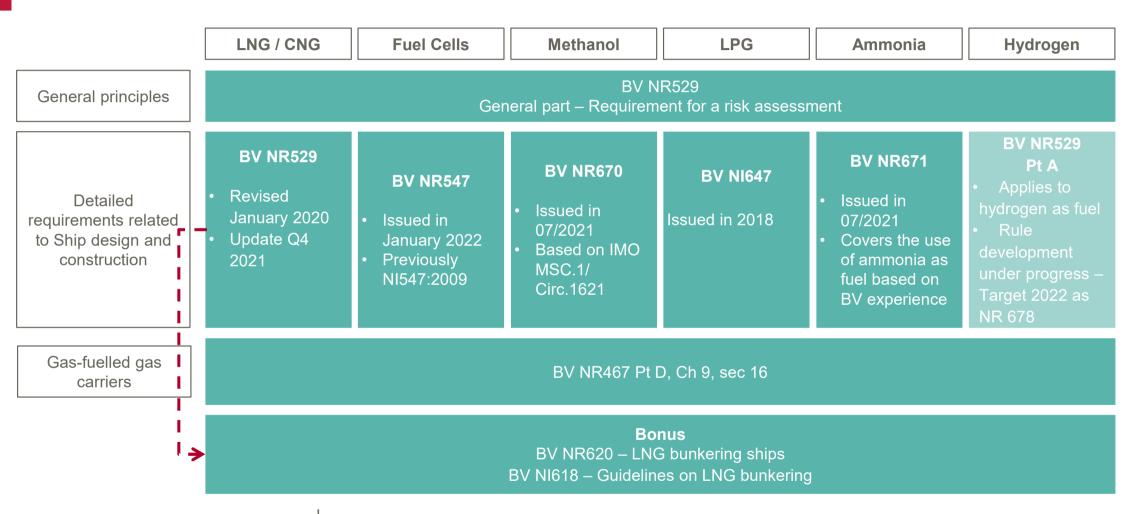
- finalized at

IMO work item under discussion

> CCC CG is gathering safety information Decision by MSC105 (04/2022) to develop guidelines

Guideline to be initiated

Development initiated by the CCC correspondance group dedicated to IGF Coderelated matters


Functional requirements and goals related to

training

IGF Code Part D

Bureau Veritas Reglas para la Clasificación

ENERGÍA A BORDO - COMBUSTIBLES ALTERNATIVOS PARA PROYECTOS INDUSTRIALES

- Sin barreras por reglamentaciones, vía de innovación y diseño alternativo
- Marco Regulatorio
 - Local (Navegación Interior), nacional (Navegación costera), internacional (SOLAS)
 - Código IGF como base, Part A
 - SOLAS diseños alternativos
 - Reglas de Clasificación
- Administración de Bandera participación temprana
 - Bandera Francesa « Guide des bonnes pratiques pour l'approbation et la certification des navires utilisant l'hydrogène comme combustible »
- Análisis de Riesgos como un paso clave.

4 Algunos Proyectos

Inland vessel

- Ship in construction
- Hydrogen main propulsion
 - Shipowner: SOGESTRAN
 - Delivery date: 2023
 - Inland pusher
 - Ballard Fuel cell
 - Power: 2 x 200kW
 - Storage: 300bar compressedH2
 - Applicable Rules : NR547 +
 French Flag requirements

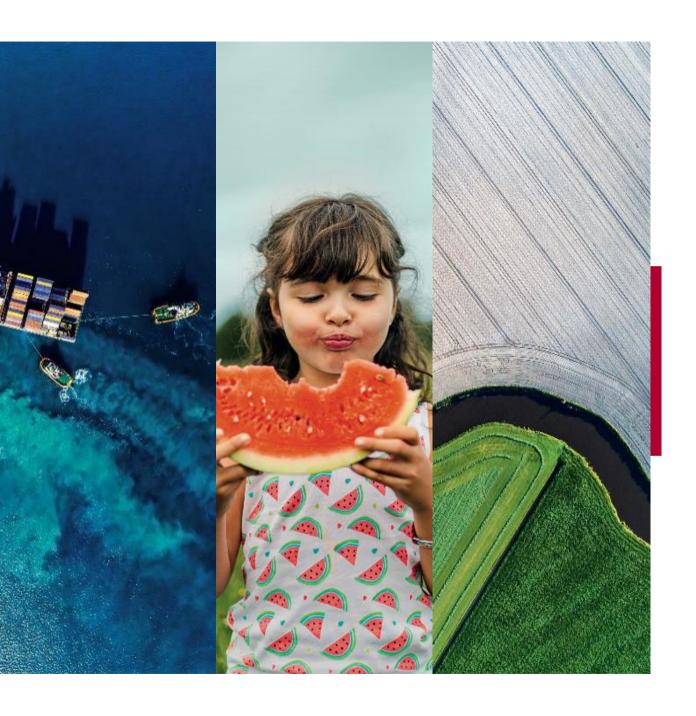
© 2022 Bureau Veritas Marine & Offshore 24 Combustibles Alternativos

Sea-going dredger

- Ship in construction
- Hydrogen auxiliary power generation
 - Shipowner: Region Occitanie
 - Delivery date: 2023
 - Sea-going Dredger
 - Helion Fuel cell
 - Power : 200kW
 - Storage: compressed H2
 - Applicable Rules : NR547 +
 French Flag requirements

B U R E A U VERITAS

- Ship in construction
- Hydrogen main propulsion
 - Shipowner: Maritime School of Bastia
 - Delivery date: 2024
 - Fishing vessel for training purpose
 - EODev Fuel cell
 - Power : 2 x 70kW
 - Storage: compressed H2
 - Applicable Rules : NR547
 - + French Flag requirements



B U R E A U VERITAS

Roro vessel

- Ship in construction
- Hydrogen auxiliary power generation
 - Shipowner: Penguin International
 - Delivery date: 2023
 - Technology **Demonstration** Project
 - Vinssen Fuel cell
 - Power : 60kW
 - Storage: compressed H2
 - Applicable Rules : NR547

SHAPING A WORLD OF TRUST

WWW.BUREAUVERITAS.COM

