Pivotal role for heat pumps and thermal energy storage in the decarbonization of the industrial sector

Elena PALOMO DEL BARRIO

Congreso Nacional de Medio Ambiente CONAMA 2021 31 Mayo - 3 Junio 2021

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

- **1. Industrial energy use** Process heat on the target
- 2. Electrification of process heat Heat pumps and thermal energy storage
- 4. Industrial heat pumps (IHP) Technology and applications
- 5. Thermal energy storage solutions for industrial heat pumps CIC energigune technology
- 6. Conclusion

- 1. Industrial energy use Process heat on the target
- Electrification of process heat
 Heat pumps and thermal energy storage
- Industrial heat pumps (IHP) Technology and applications
- Thermal energy storage solutions for industrial heat pumps
 CIC energigune technology
- 6. Conclusion

INDUSTRIAL PROCESSES ARE CURRENTLY RESPONSIBLE FOR 25% OF FINAL ENERGY CONSUMPTION AND 20% OF TOTAL GAS EMISSIONS IN EUROPE

- Thermal energy accounts for 81% of the total energy demand, 66% consumed in process heating
- Low temperature (< 200 C) process heat represents 37% of total process heating requirements, whereas high temperature (> 200 C) process heat accounts for 63%
- The current industrial process heat demand is primarily (78 %) covered by fossil fuel sources. Relatively small shares are covered by more sustainable sources such as biomass (11 %) or electricity (3 %).

PROCESS HEAT USE BY SECTORS AND TEMPERATURE LEVEL

© CICenergiGUNE. 2020. All rights reserved.

SECTORS AND TEMPERATURE LEVEL BY WASTE HEAT POTENTIAL

78 TWh/year

124 TWh/year

minerals, food, and paper industries.

Only industries that use high temperature process heat, like the steel industry

200 – 500 C

> 500 C

SUMMARY

SUMMARY

- Industrial energy use Process heat on the target
- Electrification of process heat Heat pumps and thermal energy storage
- Industrial heat pumps (IHP) Technology and applications
- Thermal energy storage solutions for industrial heat pumps
 CIC energigune technology
- 6. Conclusion

ELECTRIFICATION OF PROCESS HEAT

RENEWABLE POWER-TO-HEAT - Contribution to heat sector decarbonization and power sector transformation

DECENTRALISED HEATING SYSTEMS

CENTRALISED HEATING SYSTEMS

The share of renewable energy in global annual electricity generation is expected to be increased from 25% today to 86% in 2050

Electrification of end-use sectors is seen as a key solution to decarbonisation given the efficiency gain achieved by electrifying these sectors.

CHP = combined heat and power; PV = photovoltaic. Based on: Bloess et al. (2018).

Heat pumps or electric boilers combined with thermal energy storage

Decarbonization of process heat while providing demand-side flexibility

ELECTRIFICATION OF PROCESS HEAT

Large-scale increase in electricity demand due to the production of heat from electricity, could creates challenges in covering peaks and increasing ramping requirements

Enhanced global energy efficiency and process heat cost reduction

INCREASING SELF-CONSUMPTION FROM LOCAL RENEWABLE-BASED GENERATION CIC

energi GUNF

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

- Industrial energy use Process heat on the target
- Electrification of process heat Heat pumps and thermal energy storage
- 4. Industrial heat pumps (IHP) Technology and applications
- Thermal energy storage solutions for industrial heat pumps
 CIC energigune technology
- 6. Conclusion

HEAT PUMPS FOR PROCESS HEATING

INCREASING THE OVERALL EFFICIENCY OF THE PROCESS WHILE ACHIEVING STRONG REDUCTION OF CO2 EMISSIONS

- Industrial heat pumps (IHP) are a technology which can upgrade the temperature of a waste heat source such that it can be re-used within a process
- Electrically-driven vapor compression cycle is the most commonly used IHP technology
- This is the most efficient power-to-heat technology (COP = 2.5 - 5)
- Can be implemented in both new and existing process operations

HEAT PUMPS FOR PROCESS HEATING

CIC

OVERVIEW OF INDUSTRIAL HEAT PUMPS

HEAT PUMPS FOR PROCESS HEATING

POTENTIAL APPLICATIONS

Heat pumps for temperatures up to 100°C have the potential to cover 222 TWh/a or 11 % of the process heating demand in European industry. This could lead to CO2 emission reductions in the order of 51 Mt/a.

In the case that heat pumps also become a mature technology for the **supply of heat in the temperature range of 100°C to 200°C**, an additional 508 TWh/a or 26 % of the total process heat demand can potentially be emission free, with potential additional CO2 reductions in the order of 95 Mt/a

Transitioning industry to the **USE**

electricity

of RENEWABLE

Heatpumps for

DECARBONIZATION of

heat supply in industry

the LOW TEMPERATURE

200°C

<u>https://doi.org/10.1007/s1205</u> <u>3-017-9571-y</u> <u>https://doi.org/10.2760/29019</u> <u>7</u>

- Industrial energy use Process heat on the target
- Electrification of process heat
 Heat pumps and thermal energy storage
- Industrial heat pumps (IHP) Technology and applications
- 5. Thermal energy storage solutions for industrial heat pumps CIC energigune technology
- 6. Conclusion

RESEARCH ACTIVITY AT CIC ENERGIGUNE

Applications	Temperature range (°C)	TES technology	
Renewable heating and cooling in buildings and tertiary sector	40 - 120	LHS with organic solid-state PCMs	
Renewable industrial process heat	80 – 200 up to 600	LHS with organic solid-state PCMs LHS with inorganic solid-state PCMs	
Industrial waste heat valorization	up to 1000	SHS with low-cost solid materials	
Applications in the power sector – CSP dispatchability, TPP and grid flexibility	up to 800	 SHS in low-cost solids and molten salts LHS with inorganic solid-state PCMs or shapes stabilized PCMs TCS based on metal oxides supporting redox, carbonatation or hydration chemical reactions 	
		SUS: Sancible heat storage	

SHS: Sensible heat storage LHS: Latent heat storage TCS: Thermochemical storage

TES TECNOLOGY STATUS AND INNOVATION OUTLOOK (IRENA 2020)

Competing technologies in the short-to-mid term

<u>Because of cost</u> Water tanks Solid-state <u>Because of spatial</u> <u>footprint</u> HT Latent heat Salt hydration

Cost (\$/kWh) targets by 2030 SEN < 25 LAT 60-95 TC 80-160

TES FOR INDUSTRIAL HEAT PUMPS (80 – 200 $^{\circ}\mathrm{C}$) Technology status and Research objective

Pressurized water tanks	Latent heat storage
Commercially available Proven technology	Still under development
Current cost: 35 \$/kWh Target 2030: 25 S/kWh	Current cost: 60-120 \$/kWh Target 2030: 60-95 \$/kWh
Space footprint Low energy density (30 kWh/m3 approx.)	Space footprint 3-5 times higher energy density
COP degradation Increasing temperature lift	No COP degradation expected Isothermal storage
 Advantages Drawbacks 	CIC's CHALLENGING OBJECTIVE Developing cost competitive (< 25 \$/kWh) latent heat storage technol

>

STRATEGY OF DEVELOPMENT

Currently used PCMs are solid-liquid PCM with low thermal conductivity Large surface area for PCM/HTF heat exchange is, therefore, needed HX (or PCM macroencapsulation) usually account for more than 60% of CAPEX

Avoid using either HX or macroencapsulation by a **new class of PCMS** leading to low-cost **packed-bed storage system**

PCM-based fixed packed-beds

SOLID-STATE PHASE CHANGE MATERIALS

Organic plastic crystals undergoing a solidstate phase transition from a compact, ordered crystalline phase (low-temperature phase) to a highly directionally disordered crystalline phase (high-temperature phase or plastic crystal)

∆S - high

Surprisingly high enthalpy of transition

Many times comparable to that of melting/solidification processes

MAIN FEATURES OF STUDIED PHASE CHANGE MATERIALS

High 1400 -PE Density (kg/m³) 1200 1100 900 volumetric PG TAM energy density NPG in a suitable T AMPL range ••••• n-alkanes C-50 ••••• Plastic Crystal 800 **Easy working** 350 temperature _atent heat (J/g) PE 300 C-50 tailoring TAM 250 -C-19 AMPL Easv 200 improvement PG 150 -··· n-alkanes NPG of initial --- Plastic Crystals 100 performances 60 80 120 20 100 40 140 160 180 200 Temperature (°C) Compatibility Together, high latent heat and high density lead to with commonly volumetric energy density 3 times higher than used HTFs that of water under similar working conditions

© CICenergiGUNE. 2020. All rights reserved.

Others

22

CIC energi **GUNE**

I

I

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

MAIN FEATURES OF STUDIED PHASE CHANGE MATERIALS

High volumetric energy density in a suitable T range

Easy working temperature tailoring

Easy improvement of initial performances

Compatibility with commonly used HTFs

Others

Changing phase transition properties in a continuous manner simply changing mixture composition – Easy processing of the material by powders mixing and pressing

MAIN FEATURES OF STUDIED PHASE CHANGE MATERIALS

High volumetric energy density in a suitable T range

Easy working temperature tailoring

Easy improvement of initial performances

Compatibility with commonly used HTFs

Others

T tr in charge = T tr in discharge Shape-stabilized solid-liquid PCM with solid-state PCMC as active supporting media – Increasing up to 50% heat storage capacity while lowering specific material cost (up to 120 °C so far)

Increasing apparent thermal conductivity (x 5) by adding small amount of ENG (<10%) – Easy processing by powders mixing and pressing

Overcoming hysteresis by controlling the size of crystals of initial powders

MAIN FEATURES OF STUDIED PHASE CHANGE MATERIALS

High volumetric energy density in a suitable T range

Easy working temperature tailoring

Easy improvement of initial performances

Compatibility with commonly used HTFs

Others

Soluble in water – Protective coating needed – Obtained by low-cost processing method (deep-coating or spraying)

Compatible with vegetal oils - Very low-cost attractive HTF

	Rapeseed	Sunflower	Soybean	Coconut	Cotton	Jatro pha
Flashpoint Density (20°C)	285°C 920 kg/m³	316°C 925 kg/m ³	330°C 920 kg/m ³	230°C 915 kg/m ³	243°C 921 kg/m ³	236°C 920 kg/m ³
Cp (25°C) J/kg.K	2001.6	1989.7	2015.8	2205.5	2002.1	2039.6
Cp (200°C) J/kg.K	2682.8	2623.3	2690.1	2534.3	2509	2515
k (25°C) W/m.K k (200°C) W/m K	Å.	2		V	Yes	

MAIN FEATURES OF STUDIED PHASE CHANGE MATERIALS

High volumetric energy density in a suitable T range

Easy working temperature tailoring

Easy improvement of initial performances

Compatibility with commonly used HTFs

Others

- Easy and versatile integration into the storage system – Wide variety of shaping and sizing range
- Basic chemical components available in the market
- Affordable production cost (1.2 €/kg)
- Safe material, non-toxic, non corrosive
- Easy recycling (e.g. green H2 production and valuable elemental carbon)

COST ESTIMATION (CAPEX)

Pressurized water tanks	Latent heat storage (SL- PCMs)	CIC energiGUNE technology	
Commercially available	Still under development	Still under development	
Proven technology Current cost: 35 \$/kWh Target 2030: 25 \$/kWh	Current cost: 60-120 \$/kWh Target 2030: 60-95 \$/kWh	Current cost: 35-45 \$/kWh Target 2030: < 25 \$/kWh	
Space footprint Low energy density (30 kWh/m3 approx.)	Space footprint 3-5 times higher energy density	Space footprint 3 times higher energy density	
COP degradation Increasing temperature lift	No COP degradation expected Isothermal storage	No COP degradation expected Isothermal storage	

- Industrial energy use Process heat on the target
- Electrification of process heat Heat pumps and thermal energy storage
- Industrial heat pumps (IHP) Technology and applications
- Thermal energy storage solutions for industrial heat pumps
 CIC energigune technology
- 6. Conclusion

- The electrification of low-temperature process heat is seen as key solution toward the decarbonization of manufacturing industry
- Industrial heat pumps are the most efficient technology for converting renewable electricity into heat
- Heat pumps combined with thermal energy storage are flexibility heating systems allowing increased global energy efficiency and reduced process heat cost while providing demand-side flexibility to the grid
- Latent heat storage technology developed at CIC energigune has strong potential for improving the state of the art (water tanks), increasing compactness and reducing costs

GRACIAS · THANK YOU · ESKERRIK ASKO

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Parque Tecnológico • c/Albert Einstein 48 01510 Vitoria-Gasteiz • (Álava) SPAIN +34 945 29 71 08

CONTACT

Elena PALOMO DEL BARRIO Scientific Director of TES area epalomo@cicenergigune.com

Making sustainability real

cicenergigune.com