

Del residuo al recurso: haciendo realidad el biometano, energía circular para el reto climático y demográfico.

Conama 31 mayo 2021

Naturgy ha sido pionero en el despliegue del Biometano

Methamorphosis (Vilasana, Lérida)

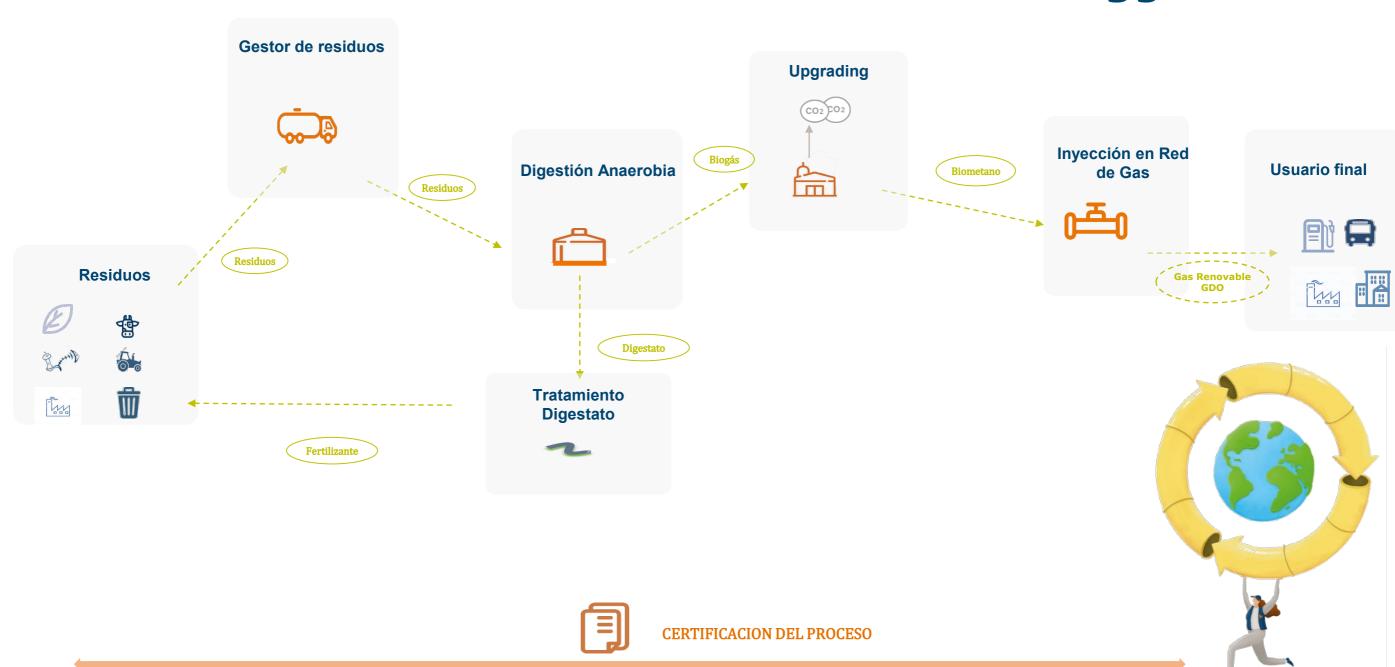
- Tratamiento de purines de cerdo obteniendo biometano para mitigar las emisiones GEI.
- Necesario pretratamiento cuando el azufre es elevado antes del proceso de upgrading.
- Asegurar la producción continua de biogás mediante un compromiso de la correcta gestión y caracterización de los residuos y de los suministros auxiliares
- Retos de la coordinación de un gaseoducto virtual para suministrar Biometano en otro punto de suministro

ECO-GATE EDAR Butarque (Madrid)

- Complejidad de supervisión de la tecnología de aminas vs la de membranas
- Primera Inyección en red con aprendizajes y mejoras del diseño inicial.
- Desarrollo de certificados de origen privados de gas renovable.
- Uso del Biometano en movilidad tras inyectar en red

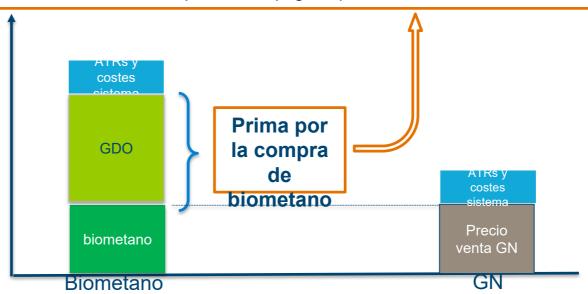
EDAR BENS (La Coruña)

- √ Viabilidad de la tecnología de membranas para biogás de Edar
- √ Validación del uso del biometano en una estación de repostaje de GNC para autobús interurbano y vehículos propios de la EDAR.
- ✓ Capacidad de almacenamiento en autoconsumo limitado. Importante equilibrar oferta y demanda.


Vertedero Elena (Cerdanyola del Vallés, Barcelona)

- ✓ Disminución de la producción del biogás característica de los vertederos
- ✓ Analíticas periódicas necesarias
- ✓ Para conseguir un biogás con las características necesarios es imprescindible controlar el estado de los pozos de captación del biogas del vertedero

La innovación esta en la coordinación



Visión Cliente - biometano

El biometano requiere de mecanismos de apoyo tanto a la inversión como a la operación/consumo:

- > Tarifas FIT/FIP, que viabilicen el desarrollo de proyectos y el sobrecoste a pagar por el consumidor
- > Instrumentos fiscales que reconozcan su origen renovable y su rol como sumidero de CO2:
 - los productos "nuevos entrantes" suele tener **ventajas fiscales** para mejorar las barreras de entrada al mercado.
 - la anunciada reforma de la fiscalidad española bajo el lema "quien contamina paga", debería incluir rebajas fiscales para los productos que absorben CO2 y por lo tanto contribuyen a conseguir una economía neutra en carbono (i.e. Movilidad Sostenible)
 - la **recaudación del IEH** del sector gasista, en parte o en todo, podría orientarse al desarrollo del gas renovable.
- Incentivos y subvenciones a la inversión, trasladables al precio final pagado por el consumidor.

¿Qué es necesario?

Lograr un precio de mercado del biometano que viabilice los costes de producción

Estabilidad del mercado

- Un marco regulatorio estable en el que se fijen unos objetivos por tipología, en base al potencial de producción
- Una política de **mecanismos de apoyo** (incentivos, subvenciones y ayudas), por los beneficios que aporta al país
- Un sistema de certificados de garantía de origen de los gases renovables, que acredite la procedencia y trazabilidad de los mismos y el impacto ambiental asociado a su producción y uso

Proyectos optimizados y eficientes

- Gestion de residuos optimizada y garantizada en el tiempo
- Calidad del biogás y biometano, que minimice los rechazos (recirculación) o quema en antorcha
- Optimizacion de la tecnología y de los costes de los proyectos
- Distancia y capacidad de inyección
- Consumidores incentivados en el consumo del biometano

Gracias

Esta presentación es propiedad de Naturgy Energy Group, S.A. Tanto su contenido como su diseño están destinados al uso exclusivo de su personal.

©Copyright Naturgy Energy Group, S.A

Naturgy ha sido pionero en el desarrollo de proyectos de biometano en España y basa su despliegue comercial en la experiencia y know-how adquiridos en estos años a través de la innovación

Methamorphosis (Vila-sana, Lleida)

Concepto:

Tratamiento de purines de cerdo obteniendo biometano para mitigar las emisiones GEI.

Objetivo:

Conseguir concentraciones de metano superiores al 95% para inyección a red y uso en movilidad.

Descripción:

- Planta de upgrading de 214 Nm3/h de biogás. Tecnología de membranas.
- Optimización del pretratamiento del biogás para reducir costes.
- Futura inyección a la red, unido a gasinera para suministro de GNC
- Inversión: 1,2 M€
- Producción biometano: 9,4 GWh/a

Inicio: mayo 2018
Fin: diciembre 2019

ECO-GATE EDAR Butarque (Madrid)

Concepto

Integrado en el Proyecto ECO-GATE. Alineado con conceptos de movilidad sostenible.

Objetivo:

- Inyección de gas renovable en la red de gas natural
 y conexión de gasinera a red.
- Desarrollar el mercado de certificados de origen privados de gas renovable.

Descripción:

- Planta de upgrading de 100 Nm3/h de biogás. Tecnología de absorción con aminas
- Estación de repostaje de GNC para vehículos del consorcio ECO-GATE.
- Inversión: 0.8 M€
- Producción biometano: 5,0 GWh/a

Inicio: mayo 2019 Fin: octubre 2020

EDAR BENS (La Coruña)

Concepto

Digestión anaerobia en planta de tratamiento de aguas residuales.

Objetivo:

Producir biometano procedente de aguas residuales válido para inyección en red y movilidad.

Descripción:

- Planta de upgrading de 100 Nm³/h de biogás.
 Tecnología de membranas.
- Optimización de costes; probando nuevas membranas y nuevas soluciones.
- Estación de repostaje de GNC para autobús interurbano y vehículos propios de la EDAR.
 Futura invección a red.
- Inversión: 1.1 M€
- Producción biometano: 5,5 GWh/a

Inicio: octubre 2018

Fin: 3Q 2021

Vertedero Elena (Cerdanyola del Vallés, Barcelona)

Concepto:

Procesamiento del biogás generado en vertedero clausurado para conversión a biometano destinado a inyección en red.

Objetivo:

Concebido como un caso de estudio y desarrollo tecnológico a escala industrial para proporcionar información de las claves para la mejora de rentabilidad de este tipo de proyectos.

Descripción:

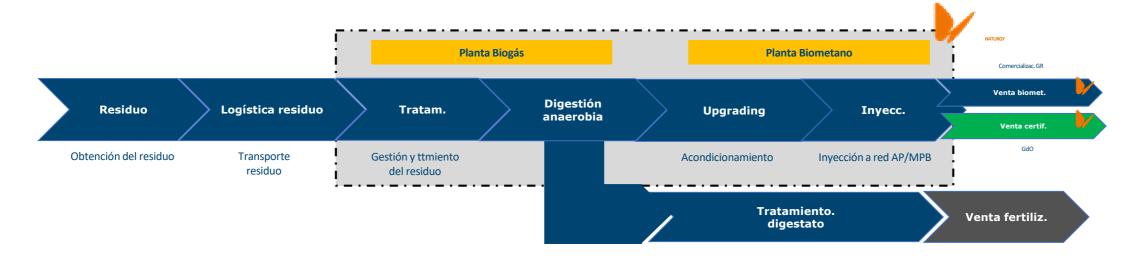
- Planta de upgrading de 350 Nm3/h de biogás.
- Inversión: 2.2 M€

Tecnología membranas.

Producción de biometano: 22.2 GWh/año

Inicio: mayo 2017

Fin: mayo 2021



Validada la experiencia tecnológica, el reto es operar las plantas con las expectativas que demanda el mercado

Retos en la optimización de los proyectos

Gestión continua del residuo, que garantice una producción estable y de calidad del biometano

Residuos

Valorizar el digestato como producto de la DA dando lugar a fertilizantes con mayor o menor valor añadido en función de la dieta y posterior tratamiento

Digestato

Tecnología

Los procesos de DA y posterior *upgrading* deben contar con la **tecnología adecuada** en función del origen del **residuo**, **calidad** del biogas y **volumen** a tratar

Uso final

- Inyección directa en red, mediante gasoducto virtual o consumo directo.
- Cada tipología, con sus **condicionantes** y **retos**

Situación regulatoria - España

Anteproyecto de Ley de Cambio Climático y Transición Energética

Implantación de un sistema de certificación que permita la supervisión y control. Sin plazo establecido

Plan Nacional Integrado de Energía y Clima PNIEC

Medida 1.8 sobre gases renovables: incluye como barreras la inexistencia de una regulación que permita la inyección del gas renovable en la red de gas natural y de un sistema de garantías de origen de los gases renovables que garantice la procedencia y trazabilidad de los mismos.

Estrategia de Transición Justa

Incluye los instrumentos necesarios para optimizar las oportunidades de empleo de la transición para los territorios que puedan verse afectados para que nadie quede atrás.

Trasposición **Directiva Europea** REDII

Los estados miembros velarán por que el origen de la energía producida a partir de fuentes renovables pueda garantizarse, a más tardar el 30 de junio de 2021.

El gas renovable necesita de un desarrollo importante en la forma de certificar las garantías de origen.

Grupo de trabajo - GET 25 (abril 2019)

Objetivo: crear documento de referencia, con el apoyo de UNE, para la definición de los requisitos de las garantías de origen del biometano para inyección en la red del sistema gasista.

\$-----

Enero 2020

European Renewable Gas Registry

Certificados Privados

Certificados Públicos de Garantía de Origen

A realizar por la Administración:

- Designar al Organismo Competente para gestionar estos certificados.
- Realizar y gestionar una Plataforma de registro sobre la que realizar el seguimiento y trazabilidad de estos certificados.