Proyecto SPAIN 2017

Sistema de Propulsión Avanzado INtegrado 2017 Madrid, 28 de noviembre de 2018

INDICE

1. Introducción y resumen del proyecto

Objetivo

Estructura

Cronograma

2. Desarrollos Tecnológicos del proyecto

3. Valoración y conclusiones

O Introducción y resumen del proyecto Objetivo

- El objetivo principal del proyecto SPAIN2017 es incrementar la competitividad de la industria de automoción española y posicionarla estratégicamente mediante el desarrollo de tecnologías nacionales orientadas a mejorar la eficiencia energética y sostenibilidad del transporte.
- Desarrollo de tecnologías asociadas al motor de combustión Otto para lograr vehículos de gasolina híbridos que se postulen como una alternativa competitiva de transporte de personas y mercancías.
- Reducir emisiones de gases de efecto invernadero y contaminantes en transporte de personas y mercancías en entornos urbanos.

- Impulso supervivencia motor de combustión limpio y sostenible
- Impulso electrificación del transporte

Introducción y resumen del proyecto Consorcio

Nº EMPRESA	NOMBRE EMPRESA
1 (Coordinador) REPSOL	REPSOL S.A.
ma/erm2c	MICROELECTRÓNICA MASER S.L
lancor	LANCOR 2000, S.COOP
4 CINFRANOR	INFRANOR SPAIN S.L.U.
5 CIE Automotive	GRUPO COMPONENTES VILANOVA, S.L. CIE MECAUTO, S.A

ORGANISMOS DE INVESTIGACIÓN						
TECNALIA RESEARCH & INNOVATION	tecnalia) Inspiring Business					
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS	CONSELIO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS					
UNIVERSIDAD DE MONDRAGÓN	MONDRAGON UNIBERTSITATEA					
IK4 AZTERLAN	IK4 O Research Alliance					

o Introducción y resumen del proyecto

Consorcio



Introducción y resumen del proyecto

Estructura

 El esquema general donde se muestran las principales tecnologías desarrolladas y su interconexión con el vehículo híbrido son:

Introducción y resumen del proyecto

Estructura

1.-TECNOLOGÍAS INNOVADORAS PARA EL MOTOR DE COMBUSTIÓN

Nuevas formulaciones de gasolinas avanzadas

Nuevas formulaciones de lubricantes de alta eficiencia

> Sistema de invección avanzado

Optimización del motor para el uso de las nuevas formulaciones

2.-SISTEMA DE ACCIONAMIENTO AVANZADO

Dimensionamiento definición de la arquitectura

Desarrollo de un nuevo concepto de motor

ECU tracción

ECU gestión energética

ECU electrónica de potencia

Fabricación de prototipos y validación de subconjuntos

3.-CONVERSIÓN Y **APROVECHAMIENTO** ENERGÉTICO DEL MOTOR DE COMBUSTIÓN

Tecnologías de aprovechamiento de gases de escape

Generador óptimo - tecnologías avanzadas en la conversión

Especificacióny selección de vehículo, casos de uso y dimensionamiento del powertrain híbrido

Especificación deintegración en vehículo final rolling chasis

Diseño de integración electrónica y mecánica

Validación en bancada de funcionamiento integrado

Integración de powertrain híbrido en rolling chasis

Validación en bancada de rodillo y pruebas de conducción en entorno controlado

Introducción y resumen del proyecto

Cronograma

			2014 2015		2016			2017			
	ACTIVIDADES		T3 1	T4 T1 T2 T	3 T4	T1	T2 T3	T4	T1	T2 T	3 T4
A1	TECNOLOGÍAS INNOVADORAS PARA EL MOTOR DE COMBUSTIÓN										
1.1	Nuevas formulaciones de Gasolinas avanzadas										
1.2	Nuevas formulaciones de Lubricantes de alta eficiencia										
1.3	Sistema de inyección avanzado										
1.4	Optimización del motor para el uso de las nuevas formulaciones										
A2	SISTEMA DE ACCIONAMIENTO AVANZADO										
2.1	Dimensionamiento y definición de la arquitectura										
2.2	Desarrollo de nuevo concepto de motor de tracción										
2.3	ECU tracción										
2.4											
-	5 ECU electrónica de potencia										
2.6	.6 Fabricación de prototipos y validación de subconjuntos										
А3	CONVERSIÓN Y APROVECHAMIENTO ENERGÉTICO DEL MOTOR DE COMBUS	STIÓN									
3.1	Generador óptimo avanzado para la conversión de energía en el motor de o	combustión									
3.2	3.2 Tecnologías de aprovechamiento de gases de escape										
A4	INTEGRACIÓN Y VALIDACIÓN: EJERCICIOS PRÁCTICOS EN DEMOSTRADOR										
4.1	1.1 Especificación y selección de vehículo, casos de uso y dimensionamiento del powertrain híbrido										
4.2											
4.3	.3 Diseño de integración electrónica y mecánica										
4.4	4.4 Validación en bancada de funcionamiento integrado					_					
4.5	4.5 Integracion de powertrain hibrido en "rolling chassis"										
4.6	.6 Validación en bancada de rodillos y pruebas de conducción en entorno controlado										
		Total		Hito 1			Hito 2			Hito	3
	Presupuesto	7.383.140,94		3.179.139,	20	2.34	47.996,7	78	1.8	356.00	4,96

Desarrollos tecnológicos del Proyecto

- Definición y especificación **sistema propulsión** (TODOS, TECNALIA)
- Motor eléctrico de tracción (LANCOR)
- **Generador eléctrico** primario y secundario (INFRANOR)
- Carcasas (solución mecánica y térmica) (CIE Automotive)
- Motor de combustión: gasolina ligera y LSPI (REPSOL)
- Recuperación de calor residual del motor de combustión (CIE Automotive, INFRANOR, REPSOL, TECNALIA)
- Soluciones de control y gestión energética del sistema (MASER)
- Pruebas unitarias y de conjunto (TODOS, TECNALIA)
- Integración (TODOS, TECNALIA)

ICE

Motor eléctrico de tracción

ECU para hibridación y generación

Baterías

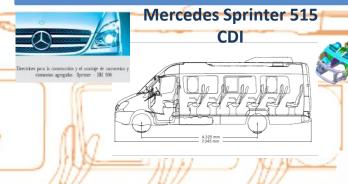
Desarrollos tecnológicos del Proyecto

Especificación y dimensionamiento del powertrain híbrido

Prestaciones objetivo

Característica	Unidad	Valor
Velocidad máxima	km/h	125
Velocidad crucero	km/h	90
Aceleración 0-50 km/h	S	<10
Autonomía con ocupación media (ciclo Braunschweig)	km	250
Pendiente máxima desde parado	-	> 18% a 0.3 m/s^2
Peso total	kg	5.500

Ciclo de conducción (urbano)


- Verificación dimensionamiento
- Tipo de control

Valor
320 V
1600 rpm
85 kW
130 kW
8
400 x 400 x 450mm más
100mm (aprox.) de
cabezas.

Características del vehículo donante

Consumos del vehículo

Simulación dinámica de vehículo

Desarrollos tecnológicos del Proyecto

Validación en banco de pruebas unitarias (Tecnalia)

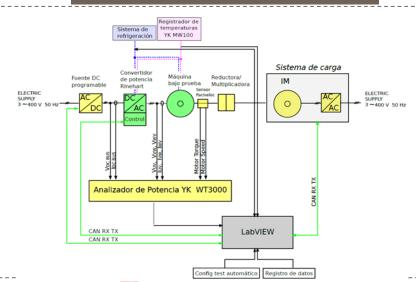
Motor eléctrico de tracción

- Arrangue automático
- Secuencia de parada normal
- Secuencia de parada emergencia
- Operación termostato y power follower
 - Sistema de refrigeración

Generador eléctrico

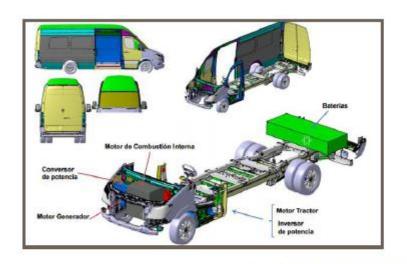
Test funcionales

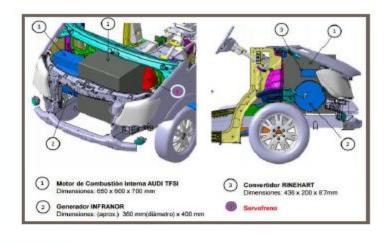
- T1: Pruebas preliminares (sin carga).
- T1.1: Análisis sin carga.
- T1.2: Calibración del offset del resolver.
- T2: Pruebas unitarias del inversor:
- T2.1: Estabilidad a bajas revoluciones.
- T2.2: Estabilidad en todos los cuadrantes de operación.
- T3: Pruebas unitarias de máquina eléctrica:
- T3.1: Mapa de eficiencias máquina eléctrica.
- T3.2: Durabilidad.
- T3.3: Puntos de funcionamiento.
- T4: Test funcionales (conjunto inversor+motor):
- T4.1: Validación del ciclo de conducción para motor de tracción Braunschweig.
- T4.2: Validación puntos operación generador eléctrico.

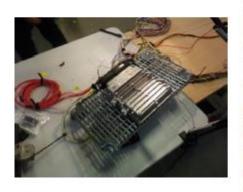

CIE Automotive

Desarrollos tecnológicos del Proyecto

Validación en banco de pruebas de integración (REPSOL)







Desarrollos tecnológicos del Proyecto

Integración en vehículo

Desarrollos tecnológicos del Proyecto

Integración en vehículo

Valoración y conclusiones

- Construcción de demostrador físico del vehículo híbrido (minibús):
 - Desarrollo de gasolina y optimización del motor de combustión para mejorar eficiencia
 - Montaje e integración mecánica y eléctrica del sistema de propulsión y de todos los componentes de sus sistemas auxiliares (refrigeración, alimentación de combustible para el ICE).
 - Modificaciones mecánicas sobre el vehículo original para recuperar funciones básicas del vehículo (suspensión, bombas de freno y dirección).
 - Montaje e integración de todos los componentes y cableado eléctricos y de control de las funciones del vehículo.
 - Validación de las lógicas del vehículo: de la hibridación, carga eléctrica, tipo de control (power follower), arranque y paro del vehículo, señales analógicas y digitales, alarmas del sistema, derating.

Pautas de éxito en la preparación de la propuestas y logros de los objetivos

- Involucración por parte del líder del consorcio para traccionar el desarrollo técnico de las actividades
- Coordinación de equipos de trabajo deslocalizados
- Definición clara del **alcance** y las tareas en las que cada socio colabora
- Asignación de recursos **personales** con los perfiles adecuados para la ejecución de las tareas asignadas
- Adecuación del presupuesto a la dedicación y gastos necesarios
- Colaboración con Centros Tecnológicos y Universidades para apoyarse en los desarrollos

Valoración y conclusiones

				111
Sociedad	Acrónimo	Programa	Fecha inicio	Fecha Fin
	NALTECH		02/02/2009	31/01/2011
CIE Inyectametal	RHEOCAR		22/01/2010	21/02/2012
	MOLAVE		30/07/2010	28/07/2012
CIE Alcosting	ALMAG		02/02/2009	31/01/2011
CIE Gameko	TALADRINA		27/02/2008	27/02/2009
Bionor	BIOLEINA		01/01/2010	31/12/2011
	RAILVALVE		01/07/2011	31/12/2013
CIE Legazpia	KERATOOL		01/01/2012	31/12/2014
	THIXOAUTO		01/05/2015	30/04/2017
CIE Norma	DESOL		29/06/2009	30/06/2011
CIE Egaña	ESTAMPIST	PID	15/06/2009	30/06/2011
	ECILAM		04/02/2010	03/02/2012
	DEFUTIL		04/08/2010	31/03/2013
	DECIMA II		06/08/2009	30/06/2012
	PROVIUTI		19/06/2012	19/06/2014
CIE Gallor	INDUCCIÓN		02/09/2013	31/03/2015
	TEINEXT		23/01/2016	30/11/2018
	ELECPAL		06/02/2017	31/01/2019
	FORJAL		01/05/2017	30/04/2019
CIE C. Vilanova	CONCOOL		01/08/2013	31/12/2014
	SENSORMOLD		15/04/2013	31/12/2014
CIE Orbelan	CAPLESS		01/07/2013	29/12/2015

29 PROYECTOS financiados en el periodo 2009 - 2018 Préstamo ≈ 15 Mio €

Fecha inicio

12/11/2013

14/03/2014

18/03/2014

25/11/2013

01/08/2014

01/08/2014

01/06/2015

01/06/2015

01/07/2015

Programa

LDI

CIEN

Fecha Fin

30/04/2015

14/09/2015

31/08/2015

30/04/2015

31/12/2017

31/12/2017

31/12/2018

31/12/2018

01/07/2018

Sociedad

CIE Inyectametal

CIE Gameko

CIE Mecauto

CIE Legazpia

CIE Mecauto

CIE Orbelan

CIE Egaña

CIE C. Vilanova

CIE C. Vilanova

Acrónimo

CUBRECULATAS

HUBLINE

FLANGE CTC50

INNFACER

SPAIN2017

ECOVOSS

ADVANSEAT

