

La Importancia de la Energía en el Regadío

CONAMA

Madrid, 26 de noviembre de 2014

Pedro Parias Fernandez de Heredia Secretario General de Feragua

Cambios en el uso del agua y de la energía en el regadío

Año	Agua usada	Energía usada
	(m³/ha)	(kWh/ha)
1950	8.250	206
1970	8.000	480
1980	7.750	775
1990	7.500	1.088
2000	7.000	1.435
2007	6.500	1.560
2011	4.670	1.500
Incremento (%)	-44	657

Evolución de los costes energéticos en el regadío

AÑO	Término de potencia**	Incremento medio factura
2008*	+250%	+40%
2009	+60%	+30%
2010	+10%	+10%
2008/2012	+475-480%	+80%
2013	+115-125%	+20%
2008/2013	+1.000-1.200%	+100%

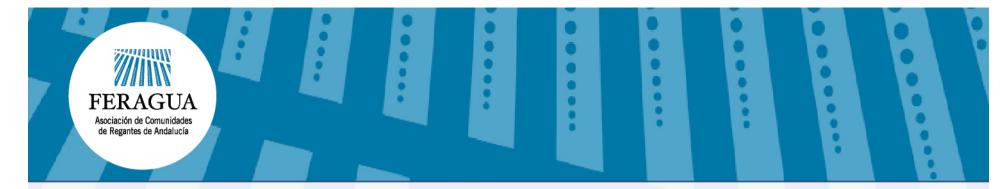
^{*} desaparición de las tarifas especiales para regadío. El sector se ve obligado a acudir al mercado libre

>Resumen: el Término de Potencia se ha incrementado en más de un 1.000% desde 2006, tanto en tarifas 3 periodos como en 6 periodos.

^{**} coste fijo independiente del consumo

Problemática actual del regadío: Las tarifas eléctricas

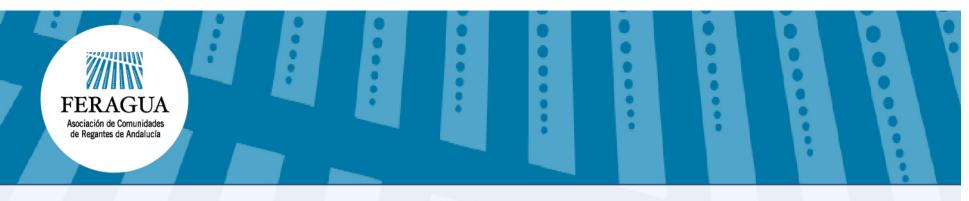
Incrementos del término de potencia desde las tarifas de riego R.1, R.2 y R.3 desparecidas el 1 de Julio de 2.008 hasta la orden IET /843/2.012 de 25 de Abril:


Tarifa	Precio € Kw /año con Tarifa R	Precio € Kw año IET /843/2012	% Aumento
6.1	7,7730	48,9155	529,30
6.2	7,3843	42,1279	470,51
6.3	6,9957	39,5620	465,52

Incrementos con la nueva orden IET /1491/2013 de 1 de Agosto con respecto hasta los existentes de la anterior orden IET indicada:

Tarifa	Precio € Kw /año IET 2.012	Precio € Kw año IET 2013	%Aumento
6.1	48,9155	105,3994	115,47
6.2	42,1279	59,6126	41,50
6.3	39,5620	50,8902	28,63

Con la aplicación de estos incrementos el coste del termino de potencia ha sufrido un incremento global desde el 1 de Julio de 2.008 que se detalla en el siguiente cuadro :

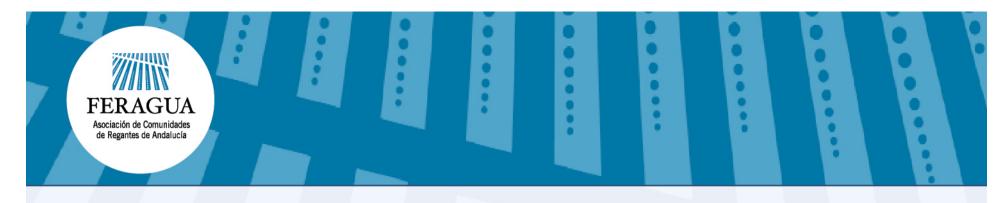

Tarifa	Precio € Kw /año con Tarifa R	Precio € Kw año IET 2013	%Aumento
6.1	7,7730	105,3994	1.255,97
6.2	7,3843	59,6126	707,29
6.3	6,9957	50,8902	627,45

Posición de España en la UE en relación al precio de la energía

5

Requerimientos de energía en el regadío

Dotación (m³/ha): 5.000


Rendimiento bomba: 0,75

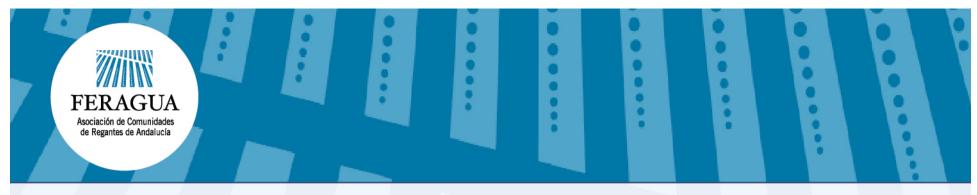
Método	H(m)	Ra (%)	E(kWh/ha)	E(kWh/m ³)	R
Superficie	3	0,5	108,89	0,044	0,18
Aspersión	45	0,7	1.166,67	0,333	1,93
Pivote	35	0,8	793,98	0,198	1,31
Localizado	30	0,9	604,94	0,134	1,00

Datos de interés: Depuración de aguas residuales 0,7 kWh/m³

Desalación 3-4 kWh/m³

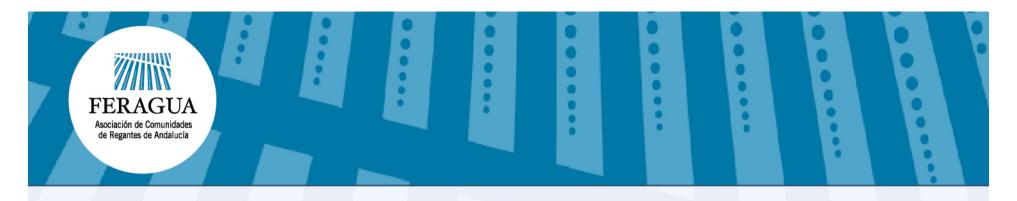
Para riego por aspersión se requiere hasta un 93% más de energía que para riego localizado

Requerimientos de energía en el regadío

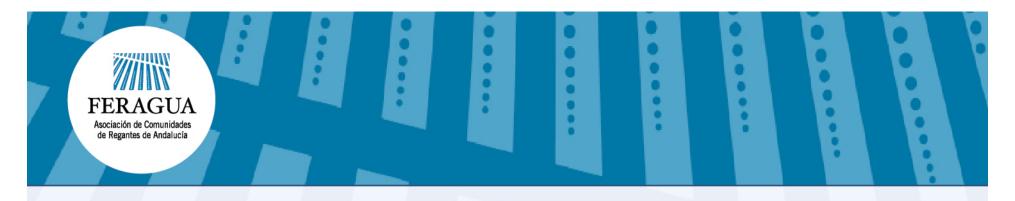

	E (kWh/ha)					
	Olivar	Olivar Maíz Algodón Cítricos Sandía				
Aspersión	486,11	1.480,89	1.515,89	1.724,14	1.220,92	
Localizado	324,07	987,26	1.010,59	1.149,43	813,94	

Ahorro de energía al usar riego localizado de un 33%

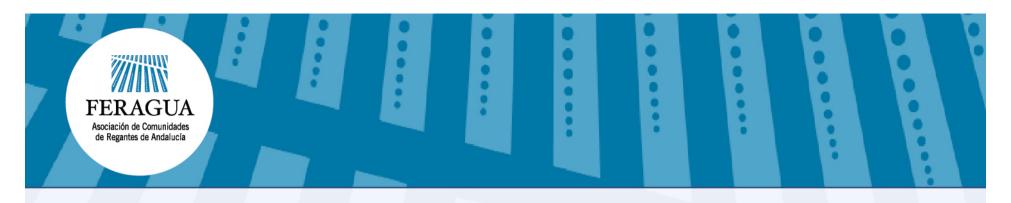
Costes reales en relación a la energía


	201	12	2013		
CR	Potencia (€/ha)	Energía (€/m³)	Potencia (€/ha)	Energía (€/m³)	
Bembézar MI	34	0.021	43.7	0.023	
Bembézar MD	30.5	0.023	36	0.023	
Genil Cabra	10.29	0.0225	12.7	0.0266	
Valle Inferior			14	0.011	
Villar	24.94	0.07476	27.49	0.0719	
Palos	35.85	0.0901	41.79	0.0985	

Potencias demandadas por CC.RR. modernizadas


Comunidad Regantes	kW/ha
F. Palmera	2.24
Palos	1.80
Las Coronas	0.98
El Villar	1.10
Genil-Cabra	1.55
M. D Bembézar	0.83
P. Guadiana	3.08
P. Bancos	1.02
Los Dolores	1.67
C. Noroeste	0.92

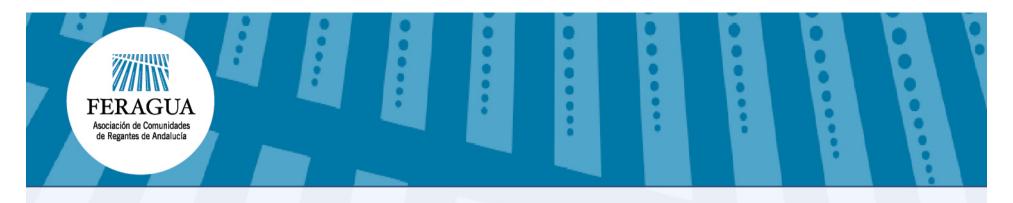
Media 1.52 kW/ha


Antecedentes Propuesta CC Feragua 2014-15

- Hace dos año aprox. comenzaron los contactos para "formalizar" una Central de Compras de Energía Eléctrica en FERAGUA con una comercializadora eléctrica, ENERGIAPLUS.
- Nuestra propuesta fue:
 - 1. Compra conjunta de energía eléctrica a través de ENERGIAPLUS, se ponía al servicio de CCF las herramientas de compra y el conocimiento de los mercados, a cambio de un FEE de gestión (variable en función del consumo).
 - 2. Gestión conjunta mediante órgano de decisión formado por FERAGUA, ENERGIAPLUS y REGANTES.
- Uso de Plataforma de Gestión Energética, para comunicación entre ENERGIAPLUS y REGANTES, con objeto de una optimización de compra de energía. A la vez es una herramienta imprescindible para la gestión de energía.

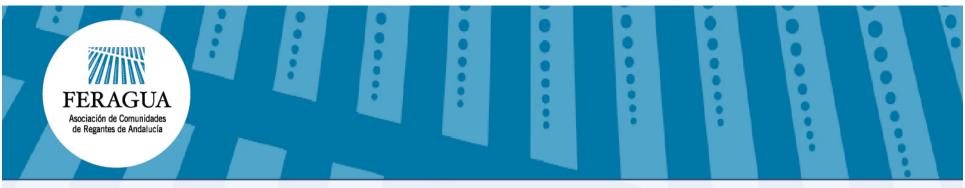
Antecedentes consumo Feragua – Adhesión CCF

- 1. FERAGUA aglutina un consumo total en torno a los **200 GWh/año**, se analizaron 130 GWh/año (65 %). Hay que añadir unos 30 a 50 GWh/año de Extremadura.
- 2. Volumen inicial 01-04-2014 CCF.- 35 GWh/año
- 3. Volumen actual 01-10-2014 CCF.- 50 GWh/año
- 4. Comunidades de Regantes adheridas de Córdoba, Huelva y Sevilla
- 5. Acuerdo a nivel nacional con FENACORE (1 TWh/año).- permitirá aumentar el volumen de energía de CCF (reducir el coste de gestión) y acometer otras estrategias de compra de energía (cierres en OMIP y contratos bilaterales)

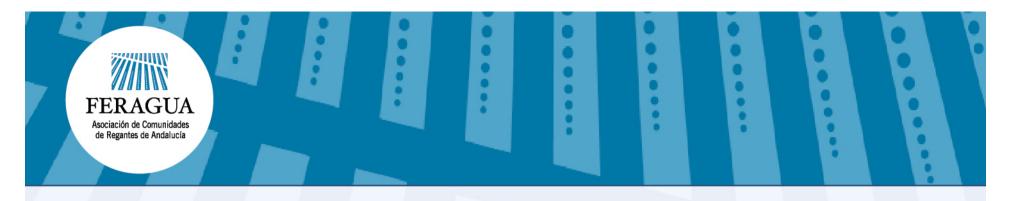

Central Compras FERAGUA 2013-14 Fee de Gestión

Consumo anual TOTAL (GWh/año)	Fee Gestión (por tramos)
60 < Consumo < 90	1,5 €/MWh
90 < Consumo < 120	1,3 €/MWh
120 < Consumo < 150	1,1 €/MWh
150 < Consumo < 180	1€/MWh
180 < Consumo	0,8 €/MWh

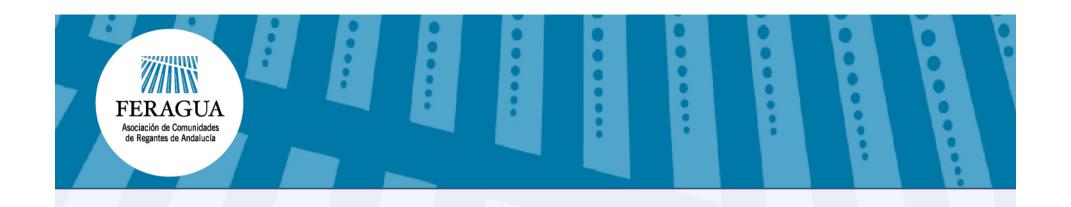
Resultados Precios Compra Energía CCF


Mes	FIJO REF (€/MWh)	CCF (€/MWh)	OMIE 2014 (€/MWh)	OMIE 2013 (€/MWh)	OMIE 2012 (€/MWh)
Abril	51	26,44	26,44	18,17	41,21
Mayo	51	42,30	42,41	43,25	43,58
Junio	51	50,62	50,95	40,87	53,50
Julio	51	46,19	48,21	51,16	50,29
Agosto	51	49,99	49,91	48,09	49,34

Central de Compra de Energía Estrategias mixtas


¿Cuál es el óptimo de compra? Estrategias mixtas de compra de energía

- 1. OMIE.- parte de la energía se compra en mercado spot.
- 2. OMIP.- identificar oportunidades de compra a futuro, mediante fijación de objetivo para los distintos productos. Importante realizar un análisis histórico para fijar objetivos.
- 3. BILATERALES.- negociación con productores finales para el cierre de precio a medio-largo plazo (3-5 años).


Central de Compra de Energía FERAGUA-FENACORE <u>Conclusiones</u>

- Resultado obtenido POSITIVO.- se ha obtenido un ahorro medio de unos 100.000 € en el periodo abr-ago 2014, aproximadamente un 10% del término de energía.
- 2. Opciones de compra a FUTURO y BILATERALES.- tras la primera temporada de riego de la CCF se plantearán "cierres a futuro" en OMIP o contratos bilaterales con productores.
- 3. Crecimiento importante de CCF al pasar a nivel nacional.- aumento considerable del consumo gestionado, que permitirá reducir el coste de gestión y acceder a otras opciones de compra.
- **4. Circular 03/2014 CNMC.** estar preparados para cuando entre en vigor, con objeto de: optimizar potencias y ajustar perfiles de consumo a los nuevos periodos tarifarios.

POSIBILIDADES DE LAS ENERGIAS RENOVABLES

- Las energías solares, hidráulicas y eólicas podían reducir el elevado coste energético actual que sufre el regadío.
- Ya sea en instalaciones aisladas, integradas con otras fuentes (gasoil, gas, eléctricas), o en instalaciones de energía distribuida con balance neto (sin coste de respaldo) el regadío podría ser competitivo y rentable.
- En las actuales condiciones del marco eléctrico hay regadío que se está abandonando por falta de rentabilidad.
- El Gobierno debe facilitar medidas que incentiven la integración de las energías renovables en el regadío.

La Importancia de la Energía en el Regadío

CONAMA

Madrid, 26 de noviembre de 2014

MUCHAS GRACIAS POR SU ATENCION